
Appendix 2.2

1. Upper and Lower Bounds If S is a set of real numbers then β is
called an upper bound for S if

x ≤ β for all x ∈ S.

Similarly, α is a lower bound for S if

α ≤ x for all x ∈ S.

We say that S is bounded if it has both an upper bound and a lower
bound.

The least upper bound U for S satisfies

i) U is an upper bound for S,

ii) U ≤ β for all upper bounds β of S.

Equivalently,

i) U is an upper bound for S,

ii’) ∀ε > 0, ∃ a ∈ S : U − ε < a ≤ U.

We can write either U = supS or U = lubS.

Think of the least upper bound as the least of all upper bounds for S.

Similarly, the greatest lower bound, L for S satisfies

i) L is a lower bound for S,

ii) L ≥ α for all lower bounds α of S.

Equivalently,

i) L is a lower bound for S,

ii’) ∀ε > 0, ∃ a ∈ S : L ≤ a < L+ ε.

We can write either L = inf S or L = glbS.

Think of the greatest lower bound as the greatest of all lower bounds
for S.
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2. Completeness Property of R.

If a non-empty set S ⊆ R has an upper bound then it has a least upper
bound.

If a non-empty set S ⊆ R has a lower bound then it has a greatest lower
bound.

In the course MATH10242 these were called, respectively, the Upper
Bound Axiom for R and the Lower Bound Axiom for R.

Assume only that non-empty sets bounded above have a least upper
bound. Let S be a non-empty set bounded below, by α say. Then −α
is an upper bound for the non-empty set −S := {−s : s ∈ S}. So, by
our assumption, −S has a least upper bound U . It is not too hard to
show that −U is the greatest lower bound for S. Thus we have shown
that non-empty sets bounded below have a greatest lower bound. Thus
the two parts of Completeness are not independent, each follows from
the other.

3. N is unbounded. Perhaps you thought it obvious that N is an un-
bounded set, but how would you prove it? First, you can only prove
something about a set such as N if you know its properties. In this
case, one of the defining properties is that if n ∈ N then n+ 1 ∈ N.

Theorem 2.2.14 Completeness of R implies that N is an unbounded
set.

Proof by contradiction. Assume N is bounded above. Since 1 ∈ N we
have N 6= ∅. Thus, by completeness of R, the assumption that N is
bounded means that κ = lubN exists (but we are not saying it is in N).
By definition of lub, κ − 1 is no longer an upper bound for N, and so
there exists n ∈ N with κ−1 < n. Rearrange as κ < n+1 and we have
found an element of N, namely n + 1, strictly greater than an upper
bound κ for N. This contradiction means our assumption is false and
N is an unbounded set. �

4. Archimedean Property Perhaps you thought is obvious that given
any α > 0 you can find n ∈ N with 1/n < α, and we have certainly
used this result earlier in the course without comment. But how would
you prove it?

12



Definition 2.2.15 The property

∀α > 0, ∃n ∈ N : 1/n < α, (5)

is called the Archimedean Property of R.

Theorem 2.2.16 The Archimedean Property of R holds if, and only
if, N is an unbounded set.

Proof

(⇒) Assume that the Archimedean Property of R holds. Assume for
contradiction that N is bounded above, by κ > 0 say. Take α = 1/κ
in (5) to find n ∈ N : 1/n < α = 1/κ, i.e. n > κ. Thus we have
found an element of N, namely n, strictly greater than an upper bound
κ for N. Thus contradiction means our assumption is false and N is an
unbounded set.

(⇐) Assume that N is an unbounded set. Let α > 0 be given. Then
1/α is not an upper bound for N (since it doesn’t have one) and so
there exists n ∈ N : n > 1/α which rearrange to 1/n < α. Thus we see
that the Archimedean property holds. �

5. The following lemma is simply an earlier one for limits rewritten for
continuous functions. I give the proof again to help you remember it.

Lemma 2.2.17 If g : A→ R is continuous at a ∈ R then

i. if g (a) > 0 there exists δ > 0 such that |x− a| < δ implies g(x) >
0,

ii. if g (a) < 0 there exists δ > 0 such that |x− a| < δ implies g(x) <
0.

Proof left to Tutorial That g is continuous at a means limx→a g(x) =
g(a) .

i. Assume g(a) > 0. Choose ε = g(a) /2 > 0 in the definition of limit
to find δ > 0 such that |x− a| < δ implies |g(x)− g(a)| < g(a) /2.
Open up as

−g(a) /2 < g(x)− g(a) < g(a) /2
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and keep only the left hand inequality which rearranges as

g(x) > g(a)− g(a) /2 = g(a) /2 > 0.

ii. Assume g(a) < 0. Choose ε = −g(a) /2, which is > 0 since g(a) < 0.
From the definition of limit we find δ > 0 such that |x− a| < δ implies
|g(x)− g(a)| < −g(a) /2. Open up as

g(a) /2 < g(x)− g(a) < −g(a) /2

and keep only the right hand inequality which rearranges as

g(x) < g(a)− g(a) /2 = g(a) /2 < 0.

�

6. Intermediate Value Theorem. In previous years I gave a different
proof. It starts with a lemma

Lemma 2.2.18 If g : A→ R is continuous at a ∈ R then

if g (a) > 0 there exists δ > 0 such that |x− a| < δ implies g(x) > 0,

if g (a) < 0 there exists δ > 0 such that |x− a| < δ implies g(x) < 0.

As in the notes we can reduce to a function g continuous on [a, b], with
g(a) < 0 < g(b) and attempt to find c ∈ (a, b) : g(c) = 0.

Consider the set
S = {x ∈ [a, b] : g(x) < 0} .

Then S 6= φ since a ∈ S, while S ⊆ [a, b] and so S is bounded above
by b. Therefore, by the Completeness Axiom of R there exists c ∈
[a, b] : c = lubS. As in the proof given we can assume c 6= a or b, i..e.
c ∈ (a, b).

There are three possibilities g(c) < 0, g(c) > 0 and g(c) = 0.

Case 1: Assume g(c) < 0.
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Continuity of g : By Lemma 2.2.18 there exists δ > 0 such that if
|x− c| < δ then g(x) < 0. If δ is sufficiently small then

{x : |x− c| < δ} ⊆ [a, b] .

Consider the point x0 = c + δ/2. Then x0 ∈ {x : |x− c| < δ} and so
g (x0) < 0, i.e x0 ∈ S, by the definition of S. But x0 ∈ S means x0 ≤ c
since c is an upper bound for S. On the other hand x0 = c+ δ/2 > c.
Hence x0 ≤ c and x0 > c, a contradiction, which means our assumption
is false and we do not have g(c) < 0.

Case 2 Assume g(c) > 0.

Continuity of g : By Lemma 2.2.18 there exists δ > 0 such that if
|x− c| < δ then g(x) > 0, that is x /∈ S.

Definition of c : The fact that c = lubS means that c is the least of
all upper bounds for S in which case c − δ, with the δ just found, is
not an upper bound for S. In turn this means there exists x1 ∈ S and
c ≥ x1 > c− δ.

But x1 ∈ S means g (x1) < 0 while c ≥ x1 > c−δ, written as |x1 − c| <
δ implies g(x) > 0. Hence g (x1) < 0 and g(x) > 0, a contradiction,
which means our assumption is false and we do not have g(c) < 0.

Case 3 Because every other possibility leads to a contradiction we
must therefore have g(c) = 0. �

7. Intermediate Value Theorem The contradictions in cases 1 and 2
can be given in many different ways. In previous editions of these notes
I gave the following

Case 1: Assume g(c) < 0.

Continuity of g : By Lemma 2.2.18 there exists δ > 0 such that if
|x− c| < δ then g(x) < 0. If δ is sufficiently small then

{x : |x− c| < δ} ⊆ [a, b] .

This, with g(x) < 0, means that

{x : |x− c| < δ} ⊆ S.
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This means that lubS ≥ c + δ > c = lubS by the definition of c.
Hence lubS > lubS with strict inequality. This contradiction means
our assumption is false and we do not have g(c) < 0.

Case 2 Assume g(c) > 0.

Continuity of g : By Lemma 2.2.18 there exists δ > 0 such that if
|x− c| < δ then g(x) > 0, that is x /∈ S.

Definition of c : The fact that c = lubS means that c is the least of
all upper bounds for S in which case c − δ, with the δ just found, is
not an upper bound for S. In turn this means there exists x1 ∈ S and
c ≥ x1 > c− δ.

So we have both

c− δ < x < c+ δ =⇒ x /∈ S and ∃ x0 : c− δ < x0 < c, x0 ∈ S.

This contradiction at x0 means our assumption is false and we do not

have g(c) > 0.

8. Theorem 2.2.19 The Bolzano-Weierstrass Theorem (1817) A
bounded infinite sequence of real numbers has a convergent subsequence.

This proof makes use of the results that an increasing sequence of real
numbers bounded above is convergent, and a decreasing sequence of
real numbers bounded below is convergent. In turn these follow from
the Completeness of the Real numbers, the limits of these sequences
being the lub and glb respectively of the sequences considered as sets.

Proof Suppose the infinite sequence {γn}n≥1 lies in the interval [a, b].

We construct a convergent subsequence by a bisection process.

Split the interval [a, b] into two halves [a, c] and [c, b], so c = (a+ b) /2.
Then (at least) one of the halves will contain infinitely many terms of
the sequence. Choose that interval, though if both contain infinitely
many choose the left interval. Label the sub-interval as [a1, b1] and note
that a ≤ a1 < b1 ≤ b. Choose γn1

to be any point of the sequence in
[a1, b1].

Then split [a1, b1] in half again and repeat the process choosing [a2, b2]
to contain infinitely many sequence points and γn2

to be one such point

with n2 > n1. Note that a1 ≤ a2 < b2 ≤ b1
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Continuing in this way, at the k-th stage we will choose an interval
[ak, bk], where ak−1 ≤ ak < bk ≤ bk−1, and a term γnk

∈ [ak, bk] with

nk > nj for all j < k. Thus we have a subsequence
{

γnk

}

k
satisfying

n1 < n2 < n3 < ... and ak ≤ γnk
≤ bk for all k ≥ 1.

Note that because of the halving process

bk − ak =
1

2
(bk−1 − ak−1)

which can be continued to give

bk − ak =

(

1

2

)k

(b− a) (6)

for all k ≥ 1.

The sequence {an}n of the left-hand ends of intervals [an, bn] is mono-

tonic increasing, bounded above by b and hence has a limit α, say.

The sequence {bn}nof right-hand ends of intervals is monotonic decreas-

ing, bounded below by a and hence has a limit β, say

The inequalities

ak−1 ≤ ak < bk ≤ bk−1 for all k ≥ 1

imply that
an < bm for all m,n ≥ 1.

Fix m ≥ 1. Then we have an < bm for all n ≥ 1 which implies that
limn→∞ an ≤ bm, i.e. α ≤ bm. But this is true for all m ≥ 1 which
implies that α ≤ limm→∞ bm, i.e. α ≤ β.

The inequalities ak−1 ≤ ak < bk ≤ bk−1 for all k ≥ 1 also imply
am ≤ ak < bk ≤ bm for all k ≥ m ≥ 1. Fix m ≥ 1 and let k → ∞ to
get am ≤ α < β ≤ bm. Thus

0 ≤ β − α ≤ bm − am =

(

1

2

)m

(b− a) ,

by (6). Let m→∞ to deduce that α = β called ℓ. Returning to

ak ≤ γnk
≤ bk,

let k →∞ to deduce, by the Sandwich Rule, that limk→∞ γnk
= ℓ. �
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9. Compact Sets The proof of the result that a function continuous on
a closed, bounded interval, [a, b] , is bounded was quite long. You will
come across the result again in Topology. But you will come across it
as a real-valued continuous function on a compact set is bounded. We
have not discussed compactness, though a closed bounded interval of R
is compact. Using the properties of compactness will shorten the proof
of the boundedness result substantially.

10. Lower Bound part of Boundedness Theorem

Theorem 2.2.20 Boundedness Theorem (1861) Suppose that f is
a function continuous on a closed and bounded interval [a, b]. Then
there exist c, d ∈ [a, b] such that

f(c) ≤ f(x) ≤ f(d)

for all x ∈ [a, b].

Proof In the lectures I gave the proof that the upper bound is attained.
I suggest that you write out the proof for the lower bound. You can
now check if your proof is correct:

By the previous Theorem f is bounded on [a, b]. Look at the lower
bounds and set m = glbx∈[a,b]f(x).

Use proof by contradiction, so assume the lower bound is not attained,
i.e. there does not exist c ∈ [a, b] with f(c) = m. Thus so f(x) > m
for all x ∈ [a, b]. Define

g(x) =
1

f(x)−m
,

well-defined since f(x) 6= m for all x ∈ [a, b]. By the quotient rule this
is continuous on [a, b] and so, by the previous Theorem it is bounded.
Thus there exists L > 0 such that g(x) ≤ L. Rearrange to get

f(x) > m+
1

L

for all x ∈ [a, b]. But this means that m+ 1/L is a lower bound for f .
Yet m is the greatest of all lower bounds. This is a contradiction, so the
assumption is false, i.e. the lower bound is attained at some point. �
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11. An alternative proof that a continuous function on a closed

and bounded interval attains its bounds can be given using se-
quences.

Since M is the least of all upper bounds then, for each n ≥ 1, M − 1/n
is not an upper bound for {f(x) : a ≤ x ≤ b} and so you can find a ≤
xn ≤ b such that f(xn) > M − 1/n.

Let {xnk
}
k≥1 be a convergent subsequence of {xn}n≥1, which exists by

Bolzano-Weierstrass, and set d = limk→∞ xnk
.

Let ε > 0 be given. Choose N : 1/N < ε (by the Archimedean Property
of R discussed above). Then for all k ≥ N we have

M ≥ f(xnk
) > M −

1

nk

≥M −
1

k
since nk ≥ k

≥ M −
1

N
≥M − ε.

That is for all k ≥ N , |f(xnk
)−M | < ε. This is the definition of

limk→∞ f(xnk
) = M . Yet by continuity, limk→∞ f(xnk

) = f(d) hence
f(d) = M.
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